
JOURNAL OF MAGNETIC RESONANCE 125, 34–42 (1997)
ARTICLE NO. MN971106

Protein Heteronuclear NMR Assignments Using
Mean-Field Simulated Annealing

NICOLAS E. G. BUCHLER,* ERIK R. P. ZUIDERWEG,* ,† HONG WANG,* AND RICHARD A. GOLDSTEIN* ,‡ ,§

*Biophysics Research Division, †Department of Biological Chemistry, and ‡Department of Chemistry, University of Michigan,
Ann Arbor, Michigan 48109-1055

Received July 29, 1996; revised December 23, 1996

A computational method for the assignment of the NMR spec- number of source NMR spectra. For a variety of reasons,
tra of larger (21 kDa) proteins using a set of six of the most even modest increases in protein size greatly complicate the
sensitive heteronuclear multidimensional nuclear magnetic reso- assignment process. First, the larger number of more poorly
nance experiments is described. Connectivity data obtained from resolved resonances results in greater problems with spectral
HNCa , HN(CO)Ca , HN(Ca)Ha , and Ha(CaCO)NH and spin- overlap. This situation is exacerbated by increased relaxation
system identification data obtained from CP-(H)CCH–TOCSY

rates, which limit the source data to only those obtainableand CP-(H)C(CaCO)NH–TOCSY were used to perform se-
by the most sensitive experiments. Because of these limita-quence-specific assignments using a mean-field formalism and
tions, any practical automated assignment method for pro-simulated annealing. This mean-field method reports the reso-
teins above 15 kDa must be able to work with data that arenance assignments in a probabilistic fashion, displaying the cer-
limited, probabilistic, ambiguous, and sometimes missing ortainty of assignments in an unambiguous and quantitative man-

ner. This technique was applied to the NMR data of the 172- inaccurate. A further problem is the existence of an exponen-
residue peptide-binding domain of the E. coli heat-shock protein, tially large number of ways of assigning N spin systems to
DnaK. The method is demonstrated to be robust to significant N residues in the protein, which eliminates any hope of
amounts of missing, spurious, noisy, extraneous, and erroneous performing an exhaustive search over all possible assign-
data. q 1997 Academic Press ments, even using the fastest computers. In order to deal

with this problem, many automated methods rely on some
form of buildup procedure where the most certain sections

INTRODUCTION of the protein are assigned first, consequently reducing the
number of remaining possibilities. As even the more con-The use of nuclear magnetic resonance spectroscopy to
strained regions cannot be definitively assigned before ainvestigate the structure and dynamics of proteins generally
more complete solution is found, however, these methodsstarts with the determination of the correct assignment of
generally must include some way of going back and correct-the observed resonances to the individual nuclei in the pro-
ing errors, using techniques such as simulated annealing ortein, called a ‘‘sequence-specific assignment’’ (1) . While
genetic algorithms (3, 4) . While such backtracking methodsthe assignment procedure for smaller, unlabeled proteins has
work well for smaller proteins, the number of possibilitieslargely remained a manual task due to the intrinsic incom-
that need to be considered again grows exponentially withpleteness of the homonuclear NMR spectra, the assignment
the size of the system, making applications to larger proteins

for larger, labeled proteins is paradoxically more amenable
problematic. The difficulty is increased by the existence of

to computer assistance and automation because of the spec-
suboptimal assignments that cannot be transformed into the

tral simplicity of the triple-resonance NMR experiments.
correct assignment without passing through highly nonopti-

Thus, quite a number of automated and semi-automated
mal intermediate states.

methods for performing sequence-specific assignments of
We describe here the use of a mean-field approach to

labeled protein spectra have been described in recent years;
simulated annealing that is sensitive enough to yield good

these include the use of neural networks, genetic algorithms, quality assignments for proteins in the 20 kDa range. In
simulated annealing, pseudo-energy minimization, and con- contrast to previous approaches, this method allows the en-
straint satisfaction (2) . tire assignment to evolve in a holistic manner, removing the

Most of these automated assignment methods were devel- need for proof-reading mechanisms. The mean-field ap-
oped for proteins in the range 8–15 kDa and utilize a large proach is defined by considering the assignment probabilis-

tically, allowing us to smooth the assignment space and
lessen the multiple-minima problem. We first develop the§ To whom correspondence should be addressed.
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35PROTEIN ASSIGNMENTS BY SIMULATED ANNEALING

TABLE 1methodological basis for the work, and then discuss its per-
First-Scan Sensitivities of Some of the NMR Experiments Mostformance for 172 residues from a domain of the chaperone

Commonly Used for Establishing Sequence-Specific Assignments,protein DnaK (21 kDa, tR Å 15 ns) , restricting our source
Relative to Single Proton Pulses, at Four Rotational Correlationdata to those derivable from the most sensitive triple-reso-
Times Roughly Corresponding to Molecular Weights of 7, 13, 20nance experiments. We also demonstrate how the method
and 26 kDais robust to uncertainties, ambiguities, and errors by using

progressively degraded source data. The computer program tR (ns)
can be obtained directly from the authors.

Experiment 5 ns 10 ns 15 ns 20 ns

THEORY TCa
experiments

HN(CO)Ca 0.45 0.32 0.17 0.11Automated assignment procedures generally use through-
HNCa 0.40 0.28 0.13 0.09bond connectivity data obtained from 2-, 3-, or 4-D triple-
(Ha)Ca(CO)HN 0.45 0.27 0.14 0.08

resonance experiments and are essentially based on the con- (Ha)CaNH 0.25 0.12 0.05 0.03
struction and linkage of NH-based ‘‘T’’ units. TCa

units are
constructed from HNCa and HN(CO)Ca data and connect THa

experiments

Ca( i 0 1), N( i) , H( i) , Ca( i) ; THa
units are constructed

Ha(CaCO)NH 0.45 0.27 0.14 0.08
from HN(Ca)Ha and Ha(CaCO)NH data and connect Ha( i HN(Ca)Ha 0.34 0.21 0.09 0.05

HN(COCa)Ha 0.38 0.23 0.11 0.060 1), N( i) , H( i) , Ha( i) . Further, T units such as TCb
can

HaCaNH 0.25 0.12 0.05 0.03be constructed from HN(Ca)Cb and HN(COCa)Cb data to
connect Cb( i 0 1), N( i) , H( i) , Cb( i) , etc. It is the task of

TCO experiments
the automated assignment program to correctly link these

HNCO 0.49 0.37 0.22 0.15different T units into strings such as rrrCa( i 0 1), N( i) ,
HaCaCO 0.54 0.32 0.19 0.12H( i) , Ca( i) , N( i / 1), H( i / 1), Ca( i / 1), rrr and to
HN(Ca)CO 0.26 0.14 0.05 0.02

place these in the protein sequence.
To overcome the degeneracy of the chemical shifts at the TCb

experiments
ends of the individual T’s, several different T types are

(Hb)Cb(CaCO)NH 0.37 0.19 0.08 0.04generally linked simultaneously. Most reported automated
(Hb)Cb(Ca)NH 0.20 0.08 0.03 0.02assignment programs thus use at least three different T
HN(COCa)Cb 0.25 0.12 0.04 0.02

types: TCa
, THa

, and TCb
by the programs developed in the HN(Ca)Cb 0.22 0.10 0.03 0.01

labs of Montelione and Müller (5, 6) ; TCa
, THa

, and TCO in
Other experimentsthe lab of Marion (7) ; and TCa

, TCO, and 15N-TOCSY in
(H)CCH 0.43 0.23 0.12 0.06the lab of Markley (8) . Whenever TCa

, THa
, and TCb

are
HaCa(CO)N 0.40 0.19 0.09 0.05used, placement of the strings in the sequence is obtained
HaCaN 0.16 0.05 0.02 0.01

implicitly via characteristic Ca/Cb shifts. The placement of
these T’s can also be based on Ca chemical shifts (7) , or Note. Optimal concatenation of coherence-transfer periods (all HSQC-
more generally, on side-chain shift signatures obtained from type) was assumed, and transfer times were optimized for every step using

transverse relaxation rates at taken from (10). Linewidths of 2, 3, 4, and 6(H)C(CaCO)NH-type experiments (9) . Table 1 shows
Hz were assumed for the 13CO coherence at the four correlation times, forcomputations of the first-scan sensitivities of some of the
500 MHz equipment. Degradation of efficiency caused by the cumulative

more commonly used experiments. Thus, sets of experiments effects of RF inhomogeneity and resonance offsets in multiple-pulse experi-
that yield complete TCa

, THa
, TCO, or TCb

units decrease in ments was not taken into account. As can be seen, the sensitivity of different
experiments shows varying degrees of dependence on protein size. Thesensitivity, in that order. It follows, for instance, that the
experiments used for this study are indicated in boldface.AUTOASSIGN program of Montelione and co-workers (5)

can likely only be used for smaller proteins because it relies
heavily on TCb

units (called ‘‘Ca ladders’’) , requiring of two 4-D experiments in lieu of four 3-D experiments,
HN(Ca)Cb / (Hb)Cb(Ca)NH experiments which dramati- however, limits intrinsic sensitivity considerably (9) .
cally lose sensitivity when applied to larger molecules. Pro- It should be stressed that, for larger proteins, neither spin
cedures avoiding the TCb

and/or TCO experiments should be system nor sequential information by itself is adequate to
chosen for larger proteins [unless Ca is deuterated (11)] . provide a unique sequence-specific assignment. Specifically,
The set of TCa

and THa
experiments used by the Fesik group there are multiple locations in the sequence consistent with

the spin-system identification data, and likewise many morecertainly qualifies as a good choice for the analysis of the
spectra of larger proteins; their ( in principle desirable) use possible sets of adjacent residues consistent with the connec-
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36 BUCHLER ET AL.

tivity data than actually exist in the protein. Selecting the The heart of our new approach is in the use of a mean-
field formalism for addressing the minimization problem.assignment from the multiple possibilities that best fulfills

all of these different sources of information forms the crux Rather than consider explicit assignments, as represented
by {Li } above, we consider instead a large ensemble ofof the assignment problem.

We are generally interested in finding the ‘‘best’’ assign- assignments, as is done with approaches that use genetic
algorithms (4) . In contrast to genetic algorithms, however,ment according to some objective criterion. Often optimiza-

tion problems can be reposed as energetic problems, we use the mean-field approximation and consider that each
spin system in any assignment feels the average influenceallowing the development of thermodynamic analogies. For

instance, a cost function can be defined as an ‘‘energy,’’ so of all of the other assignments in the ensemble. We can
then represent the whole ensemble as a single continuousthat the search for an optimal solution can be rephrased as

a search for a global energy minimum. Such approaches are assignment {P( i , j)}, where P( i , j) represents the occu-
pancy or the fraction of assignments where spin system i isespecially useful for probabilistic information, as Boltz-

mann’s equation can be inverted so that the energy corre- assigned to sequence location j . The power of this approach
lies in the fact that these occupancies are not restricted tosponding to a given possibility is equal to the negative loga-

rithm of the respective probability, in units of kT . ( In prac- the integer set {0, 1} of the Kronecker delta dLi ,j
. By allowing

tice, both k and T can be set equal to one.) In the current the occupancies to vary continuously from zero to one, we
case, there are two different types of terms, representing the are able to avoid the problems caused by a restricted set of
sequential connectivity and the side-chain identity. Sequen- possible moves caused by the discrete nature of the one-to-
tial connectivity information arising from linking TCa

and one mapping, allowing us to ‘‘tunnel’’ from one assignment
to another through unphysical intermediates that do not cor-THa

is encoded as Eadj( i , i *) , the compatibility for spin sys-
respond to possible assignments.tem i to be followed by spin system i * in the sequence. Side-

With this continuous assignment space, the Kroneckerchain identity data can be translated into an energy parameter
deltas in Eq. [1] are replaced by the assignment occupancies,Eseq ( i , j) , which encodes the compatibility of spin system i
yieldingto the residue types at sequence positions j and j 0 1.

The complete sequence-specific assignment is a one-to-
one mapping between spin systems and residues in the pro- E({P( i , j)})Å∑

i ,j

Eseq ( i , j)P( i , j)
tein. We can define the assignment by specifying {Li },
where Li is the ‘‘location’’ of spin system i in the sequence. / ∑

i ,i *, j

Eadj( i , i *)P( i , j)P( i *, j/ 1). [2]
The total energy E as a function of the assignment can be
expressed by summing over all possible assignments for all
resonances while eliminating most of the terms with Kro- As each spin system corresponds to one residue, and like-
necker deltas, which restricts the sums to those discrete terms wise, each residue corresponds to one spin system, for a
representing where the residues are actually assigned: protein of length N , P( i , j) must satisfy 2N normalization

constraints

E({Li }) Å∑
i ,j

Eseq ( i , j)dLi ,j
/ ∑

i ,i *, j

Eadj( i , i *)dLi ,j
dLi*, j/1

. [1]
∑

i

P( i , j) Å 1 (∀ j) [3]

The assignment problem is the search for the energy mini- ∑
j

P( i , j) Å 1 (∀i) . [4]
mum of this function in the multidimensional space of all
possible assignments {Li }. While the side-chain identifica-
tion term Eseq ( i , j) is only a function of the local assignment The occupancies are the dynamic variables for the simu-

lated annealing, and the areas of confident assignmentsof spin set i to position j , the connectivity term Eadj( i , i *)
is nonlocal, in that it is a function of where two different spin should eventually converge to zero or one. The occupancies

are initially defined by a uniform distribution (i.e., each spinsystems are assigned. In addition, there will be nonlocality
induced by the one-to-one nature of the mapping represented system is distributed uniformly over all residues) and given

‘‘velocities’’ ÌP( i , j) /Ìt drawn from a Maxwell–Boltz-by {Li }. As a result, the assignment of each spin system
must depend on how all of the other spin systems are as- mann distribution at some temperature T . The ‘‘forces’’ act-

ing on our dynamic occupancies are found by computingsigned. It is this aspect that is responsible for the multiple-
minima nature of the energy function. The search for the the negative gradient of the total energy function, where

all ‘‘masses’’ have been set to one. The occupancies andoptimal assignment is also greatly complicated by the limited
move set for transforming one assignment into another. As- velocities are updated by integration of Newton’s equations

of motion through use of the Verlet algorithm (12) . Periodi-signments can generally only be changed by swapping sets
of spin systems. cally, the velocities are rerandomized, as the temperature is
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37PROTEIN ASSIGNMENTS BY SIMULATED ANNEALING

TABLE 2
Spin-System Classes Used for Identification of Residue Type from (H)CCH Data (i ) and (H)C(CaCO)NH Data (i 0 1)

Best Good Fair

Class Theoretical i i 0 1 i i 0 1 i i 0 1

{A} 13 13 12 13 12 11 11
{T} 13 13 12 13 12 11 11
{G} 12 12 13 12 13 11 11
{S} 11 11 11 11 11 9 9
{P} 5 5 5
{IPT} 5 5
{ILV} 39 38 35 38 35 32 29
{QEM} 28 28 26
{RK} 20 20 20
{NDCQEHMFWY} 31 30 29
{NDCQEHMFWYRK} 78 75 61 60
{ÇG, ÇP} 2 2 2 2
Unknown 7 7 37 41

Note. The second column gives the number of occurrences in the 172 amino acid fragment of DnaK. The following columns show the number of
identifications in the ‘‘Best,’’ ‘‘Good,’’ and ‘‘Fair’’ quality of spectra.

gradually decreased to zero. The 2N holonomic constraints value (/10) if the spin system was not compatible with the
represented by Eqs. [3] and [4] and the N 2 nonholonomic residue class at location j , and a large negative value (04)
constraints [P( i , j) § 0] are satisfied using an iterative if the system and residue class were compatible. Similarly,
Lagrange-multiplier approach. either /10 or 04 was added to Eseq ( i , j) if the information

about the side-chain identity of the residue preceding spin
system i in the sequence is consistent with the residue classRESULTS
at position j 0 1. If a spin system was compatible with more

The mean-field assignment program was demonstrated on than one class, 04 was added for each possibility. It would
the 172-residue fragment of the peptide-binding domain of be possible to include more refined forms of this information
the E. coli protein DnaK (21 kDa). DnaK is a heat-shock encompassing varying degrees of confidence, by allowing a
protein, a member of the Hsp-70 family, that has been shown range of energy parameter values. Such confidence degrees
to function as a chaperone for protein folding in vivo. The can in principle be computed using Bayesian algorithms
chemical-shift dispersion in DnaK is relatively poor, a situa- from chemical-shift data bases (2) .
tion exacerbated by large linewidths. Input peak lists were Sequential connections were established with a combina-
constructed directly from experimental data. Spin-system tion of the four most sensitive triple-resonance experiments
identification was obtained manually from a cross-polariza- that yield complete T sets: HNCa , HN(CO)Ca , HN(Ca)Ha ,
tion (CP)-driven (H)CCH experiment that correlated the and Ha(CaCO)NH [(15–20) ; see Table 1]. This informa-
resonances of aliphatic side-chain protons with backbone a- tion was combined to provide TCa

and THa
units consisting

protons and a-carbons, and a CP-driven (H)C(CaCO)NH
of the chemical shifts corresponding to the Ca( i) , Ca( i 0experiment that correlated the resonances of side-chain car-
1) , Ha( i) , and Ha( i 0 1) spins respectively. The programbons of residues i 0 1 with backbone NHs of residues i
used an unedited peak-pick table of these TCa

and THa
fre-(13–15) . Many spin systems of the parent residue as well

quencies. Possible adjacencies were constructed by observ-as that of the preceding residue could be uniquely identified,
ing that if spin system i is followed by spin system i * in thewhereas others could be grouped together in different classes
sequence, the Ca( i) and Ha( i) resonances must be the same(see Table 2). In the ‘‘best’’ set, A, G, S, and T are uniquely
within experimental resolution as the Ca( i * 0 1) and Ha( i *identified, other methyl-containing residues are combined
0 1) resonances. Assuming that there is a Gaussian distribu-into the class {ILV}, the classic AMX systems into a single
tion of experimental measurements of the resonance positionlarge class, K and R into a class {KR}, and the classic
with widths sC and sH for the Ca and Ha resonances, respec-AMPX spin systems into a class {QEM}. Various computa-
tively, then inversion of the Boltzmann equation results intions with degraded versions of these data were also carried
an energy term quadratic in the difference in values for theout, as described below. For each of these spin system identi-

fication sets, Eseq ( i , j) was set equal to some prohibitive resonance positions:
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TABLE 3
Eadj( i , i*) Å 1

2
√
2s 2

H

[Ha( i) 0 Ha( i * 0 1)]2
q Values for Runs with Various Degrees of Degradation

% of data missing
/ 1

2
√
2s 2

C

[Ca( i) 0 Ca( i * 0 1)]2 . [5] Sidechain
information Other degredation 0 10 20 30

Best None 1.00 1.00 0.99 0.86Prolines were specifically omitted from the sequence, be-
Good None 1.00 1.00 0.86 0.65cause they have no sequential connectivity information in
Fair None 1.00 0.93 0.79 0.49

the four chosen triple-resonance experiments. Consequently, Best Gaussian noise 1.00 0.99 0.99 0.92
Eadj( i , i *)P( i , j)P( i *, j / 1) is not included in the sum in Best Erroneous identification data 1.00 1.00 0.90 0.92
Eq. [2] if a proline was excised between locations j and j
/ 1. The quality of the assignment was measured by q , 30 extra spin systems

defined as the average probability for the correct assignment Best None 1.00 0.99 0.95 0.78
Good None 1.00 0.96 0.66 0.54
Fair None 1.00 0.99 0.64 0.45

q Å 1
N

∑
i

P[ i , Lc ( i)] , [6] Best Gaussian noise 1.00 0.99 0.95 0.68
Best Erroneous identification data 1.00 0.99 0.92 0.71

where Lc ( i) is the residue location that corresponds to spin 45 extra spin systems
system i when correctly assigned. The ‘‘correct’’ assignment

Best None 1.00 1.00 0.96 0.69was obtained previously from the same data using a semi-
Good None 1.00 0.99 0.68 0.45

automated process using computer-graphic-driven interfaces Fair None 1.00 0.92 0.55 0.32
(15) , and was validated beyond any reasonable doubt from Best Gaussian noise 1.00 0.99 0.91 0.67
sequential NOE connectivities in 15N- and 13C-resolved
NOESY data, compatibility with canonical secondary struc-
ture elements, and the structural analogy of these derived Reduced side-chain information. The spin-system iden-
secondary structure elements with those of the homologous tification data involves experimental procedures such as
protein Hsc-70 (21) . In repeated runs, the simulated anneal- (H)CCH and (H)C(CaCO)NH. These experiments are gen-
ing consistently found the correct assignment of the 172- erally of lower sensitivity than the four triple-resonance data
residue DnaK protein based on the complete NMR data. sets used (see Table 1), but are the most sensitive for ob-

One common difficulty with NMR peak assignments is taining side-chain information. Thus, when sensitivity of
that the data may be ambiguous, noisy, incomplete, or erro- these experiments deteriorates with increasing rotational cor-
neous. It is thus important for any computational method to relation time, one expects loss of this type of data first.
be robust to these types of errors. In order to investigate the Thus, in addition to the ‘‘best’’ spin-system identification
robustness of the mean-field simulated annealing approach, set described above, we also defined ‘‘good’’ and ‘‘fair’’
the data set was degraded in combinations of five ways: identification data sets as shown in Table 2, to simulate such

sensitivity losses. In the good set, AMX, AMPX, and longMissing data. Either 10, 20, or 30% of the spin systems
was deleted from the data set, and replaced with a set with side-chain systems are not distinguishable from each other.

The fair set was derived from the good set by randomlyno information [no observed peaks, hence no contribution
from Eadj( i , i *) , and no preferences for any type of side changing 20% of the members of the A, G, S, T, and {ILV}

classes to the class ‘‘unknown.’’ When even fair informationchain in the protein, so Eseq was set equal to 04 for all
locations in the sequence]. cannot be obtained, identities can still be ascertained by

selective labeling of several judiciously chosen residuesExtraneous data. Resonances corresponding to 30 or 45
[e.g., (20)] . This latter situation was not simulated here.spin systems picked from nonadjacent locations of a com-

pletely different protein [Human Stromelysin-1 (20)] were The results are summarized in Table 3. Individual compu-
mixed in with the spin systems corresponding to DnaK. The tation took between 1 and 20 cpu hours on a Silicon Graphics
extraneous data had both spectral and sequential identity. Power Challenge R8000, depending upon the degree of the

Gaussian noise. Normally distributed noise was added degradation and the number of extraneous spin systems.
to the chemical shifts of all of the protons ({0.03 ppm) and When data were omitted, q was calculated based solely on
carbons ({0.10 ppm) used in the calculation of Eadj( i , i *) those spin systems still present in the data set. As shown,
(Eq. [5]) . the mean-field simulated annealing method is highly robust,

and the performance declines slowly and monotonically asErroneous identification data. The identification data for
six of the spin systems were modified to make these spin the data degrades. The values of the energy and q during

the run with Gaussian noise, 20% missing data, and 30 extrasystems incompatible with their correct location.
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39PROTEIN ASSIGNMENTS BY SIMULATED ANNEALING

guish between various omitted spin sets, the various combi-
nations of such spin sets and missing locations form the vast
majority of the off-diagonal intensity in the plots. Given the
substantial degradation of the data, the final assignment
found by the simulated annealing is actually more optimal,
given the cost function, than the correct assignment. For
instance, extraneous spin system 197 is comfortably assigned
to location 151 in the sequence, a position corresponding to
omitted data. Likewise, the spin system 121 is more opti-
mally located in sequence location 109, while spin systems
10 and 11 are shifted to identical residue types at sequence
locations 11 and 12.

It is of great interest to have some gauge of the reliability
FIG. 1. The values of the energy, calculated with Eq. [2] , and q , as of the assignment, measuring what portion is accurate and

defined in Eq. [6] , during simulated annealing. The energy values are what portion is not. Performing a simulated annealing run
relative to the energy of the correct assignment. The data from DnaK to a final temperature of zero does not provide this informa-
included the ‘‘best’’ side-chain information but was degraded by including

tion, as it will supposedly yield the best assignment even ifGaussian noise, deleting data for 20% of the spin systems, and adding data
only marginally better than other possible assignments. In-for 30 extraneous spin systems from another protein. The run converges to

a q value of 0.95, indicating that the assignment was fundamentally correct. sight into the distribution of near equally good assignments
The final value of the energy was slightly negative, meaning that given the can be obtained by performing an extended dynamics simu-
extensive degradation of the data, the simulated annealing converged to an lation at a temperature T Å 1, when the energy scale is set
answer that was actually a better assignment as judged by the cost function

by inversion of the Boltzmann equation. By collecting time-than the correct answer would have been.
averaged occupations from this run, we can obtain the
desired gauge of reliability. The resulting values of

spin systems are shown in Fig. 1. The strong negative corre-
√
»P[ i , L( i)] … , where »P[ i , L( i)] … represents the time-aver-

lation between the energy and q illustrates the validity of aged value of P[ i , L( i)] , are shown in Fig. 3. Approximately
the energy function defined in Eq. [2] . 86% of the nonomitted data are assigned with an occupancy

Figure 2 shows the values for
√

P[ i , L( i)] , where P[ i , of greater than 0.95, with 92% assigned with an occupancy
L( i)] is the occupancy of spin system i at sequence location of greater than 0.80. All of the incorrect assignments noted
L( i) , for the 197 nonproline residues and extra spin systems above had significant occupancy in other sequence locations,
at various points during the simulation. (The square root with the sole exception of the assignment of extraneous spin
was used to enhance the smaller occupancy values.) The system 197 (occupancy Å 0.95). There is of course no
spin systems were sorted with i Å Lc ( i) , so that a correct computational method that could identify such fortuitous
assignment would correspond to P[ i , L( i)] Å di ,L (i ) , repre- matches without additional information.
sented by unit intensity along the i Å L( i) diagonal. The
extra spin systems are represented past the end of the 167 DISCUSSION
nonproline residues in the actual DnaK sequence. As shown,
the method described handles realistic ( thus limited) data As mentioned in the Introduction, other researchers have

developed automated and semi-automated methods for gen-from a relatively large protein quite well. Initially, at T Å
8, the program is quite tentative about the assignments, con- erating sequence-specific assignments, employing a variety

of algorithms including constraint satisfaction, branch-and-sidering a wide range of possible options. This is highlighted
by the band at the top of the plot, representing all of the bound limited search, genetic, neural net, pseudo-energy

minimization, and simulated annealing (2) . These methodsspin systems that the program considers possibly extraneous.
Gradually the program starts to assign spin systems, still generally use a variety of spectral data, some of which can

only be obtained for smaller labeled proteins. Zimmermanavoiding firm commitments. For this reason, the program is
able to rectify the small incorrectly assigned regions at T Å and Montelione note that constraint-satisfaction systems,

which work by eliminating large portions of combinatorial6 and 4. As the confidence in the assignments grows, the
occupancy of the valid DnaK spin systems in the extraneous- space of possible solutions have the advantage of only propa-

gating, and not introducing, errors into the assignments (2) .spin-system band decreases, and the program can identify
and segregate the true extraneous spin systems using the In contrast, as we demonstrate by the correct convergence

of the assignment in cases where identification data incom-process of elimination, represented by the holonomic con-
straints. The entries representing missing spin systems be- patible with the proper assignment were included, pseudo-

energy-based approaches can actually rectify erroneous datacome restricted to the missing locations, as all other positions
become filled by valid data. As the program cannot distin- by relying on redundancy in the data set. In particular, our
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FIG. 2. Density plot of
√

P[ i , L( i)] for the 167 nonproline residues of DnaK and 30 extraneous spin systems from another protein. The square root
was used to enhance the smaller occupancy values. The four plots correspond to different stages of the annealing, indicated by the temperature. The
data, as described in the legend to Fig. 1, included the ‘‘best’’ side-chain information, but was degraded by including Gaussian noise, deleting data for
20% of the spin systems, and adding 30 extraneous spin systems from another protein. The spin systems were sorted so that i Å Lc ( i) , with the additional
spin systems appended after the DnaK spin systems. A correct assignment would correspond to intensity only along the i Å L( i) diagonal for the first
167 residues. The vast majority of density not along the diagonal corresponds to spin systems whose data were deleted. The speckled region in the
upper-right corner of the plot corresponds to the extraneous resonances.

method never eliminates any portion of the combinatorial In this way, the pseudo-energy approach can easily include
information of various degrees of certainty.space of possible solutions because all possible assignments

are considered probabilistically via a mean-field description. Another concern voiced by Zimmerman is that global opti-
mization generally does not provide partial, yet highly reli-This probabilistic interpretation of assignments leads to a

rigorous energetic description via Boltzmann’s relation and able solutions, which are more useful than complete, but
uncertain results (2) . Once again, our mean-field probabilis-makes use of a thermodynamic analogy to find the energetic

minimum representing the optimal probabilistic assignment. tic approach can provide quantitative measurements of cer-
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FIG. 3. Density plot of
√
»P[ i , L( i)] … , where »P[ i , L( i)] … is the time-averaged value of P[ i , L( i)] during a constant temperature run at T Å 1.

Under these conditions, the time average is a quantitative measure of the confidence of the assignment. The data were degraded as described in the
legends to Figs. 1 and 2.

tainty, by performing the simulated annealing at a fixed non- are developed furnishing other sorts of information, these
sources can be easily implemented in the theoretical frame-zero temperature. Once identified as ambiguous, additional

information can be obtained, e.g., from three-dimensional work. Similarly, more sophisticated techniques for side-
chain assignments can be readily included. We have shown15N- and 13C-resolved NOE spectra.

We are presenting here an approach rather than a finished how this method works on a protein that is close to the
maximum size possible for current solution NMR studies.software package. As input, our program needs a peak-

picked list of 3D NMR resonance data, where one has al- Further work in developing a more complete software pack-
age is in progress.ready established Ca( i) , Ca( i 0 1), Ha( i) , and Ha( i 0 1)

groupings via amide root resonance connectivities and corre-
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